Divisible modules

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divisible Z-modules

In this article, we formalize the definition of divisible Z-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible Z-modules are not finitely-generated. We introduce a divisible Z-module, equivalent to a vector space of a torsion-free Z-module with a coefficient ring Q. Z-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász) b...

متن کامل

Dieudonné Modules and p-Divisible Groups

The notion of `-adic Tate modules, for primes ` away from the characteristic of the ground field, is incredibly useful. The analogous notion at the prime p is that of Dieudonné modules. At finite level, Dieudonné modules classify commutative finite group schemes of p-power order over a field of characteristic p. Dieudonné modules can be used to determine the local Brauer invariant of the endomo...

متن کامل

Divisible Groups Derived from Divisible Hypergroups

The purpose of this paper is to define a new equivalence relation τ∗ on divisible hypergroups and to show that this relation is the smallest strongly regular relation (the fundamental relation) on commutative divisible hypergroups. We show that τ∗ ̸= β∗, τ∗ ̸= γ∗ and, we define a divisible hypergroup on every nonempty set. We show that the quotient of a finite divisible hypergroup by τ∗ is the tr...

متن کامل

Modules over the Ring of Pseudorational Numbers and Quotient Divisible Groups

Structure theorems are obtained for some classes of modules over the ring of pseudorational numbers and some classes of quotient divisible mixed groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1960

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1960-0116044-8